Thuộc tính Sắt

M,6%) tạo ra Trái Đất; sự tập trung của sắt trong các một nguyên tử sắt điển hình có khối lượng gấp 56 lần khối lượng một nguyên tử hiđrô điển hình. Sắt là kim loại phổ biến nhất, và người ta cho rằng nó là nguyên tố phổ biến thứ 10 trong vũ trụ. Sắt cũng là nguyên tố phổ biến nhất (theo khối lượng, 34 lớp khác nhau của Trái Đất dao động từ rất cao ở lõi bên trong tới khoảng 5% ở lớp vỏ bên ngoài; có thể phần lõi của Trái Đất chứa các tinh thể sắt mặc dù nhiều khả năng là hỗn hợp của sắt và niken; một khối lượng lớn của sắt trong Trái Đất được coi là tạo ra từ trường của nó. Ký hiệu của sắt Fe là từ viết tắt của ferrum, từ Latinh để chỉ sắt.

Sắt là kim loại được tách ra từ các mỏ quặng sắt, và rất khó tìm thấy nó ở dạng tự do. Để thu được sắt tự do, các tạp chất phải được loại bỏ bằng phương pháp khử hóa học. Sắt được sử dụng trong sản xuất gangthép, đây là các hợp kim, là sự hòa tan của các kim loại khác (và một số á kim hay phi kim, đặc biệt là cacbon).

Hạt nhân của sắt có năng lượng liên kết cao nhất, vì thế nó là nguyên tố nặng nhất được sản xuất trong các phản ứng nhiệt hạch và là nhẹ nhất trong phản ứng phân rã hạt nhân. Các ngôi sao có khối lượng lớn khi gần cháy hết nhiên liệu hiđrô, sẽ bắt đầu các chuỗi phản ứng hạt nhân tạo ra các chất có khối lượng nguyên tử tăng dần, bao gồm cả sắt, trước khi bùng nổ thành các siêu tân tinh.

Các mô hình vũ trụ trong vũ trụ mở dự đoán rằng có một giai đoạn ở đó do kết quả của các phản ứng nhiệt hạch và phân hạch chậm lại, mọi thứ sẽ trở thành sắt.

Đặc điểm cơ học

Các đặc điểm cơ học của sắt và các hợp kim của nó có thể được xác định bằng nhiều thí nghiệm khác nhau, như thử nghiệm Brinell, thử nghiệm Rockwellthử nghiệm độ cứng Vickers. Các dữ liệu đối với sắt rất phù hợp trong việc sử dụng nó để so hiệu chỉnh các đo đạc hoặc so sánh các thử nghiệm.[3][4] Tuy nhiên, các đặc điểm cơ học của sắt cũng bị ảnh hưởng đáng kể bởi độ tinh khiết của mẫu: các tinh thể sắt riêng lẻ nguyên chất dùng cho mục đích nghiên cứu thực sự là mềm hơn nhôm,[5] và sắt sản xuất trong công nghiệp tinh khiết nhất (99,99%) có độ cứng 20–30 Brinell.[6] Việc tăng hàm lượng cacbon trong sắt sẽ làm tăng đáng kể độ cứng và độ bền kéo của sắt. Độ cứng lớn nhất của 65 Rc đạt được khi hàm lượng cacbon là 0,6%, mặc dù loại này làm cho kim loại có độ bền kéo thấp.[7]

Các giá trị độ bền kéo (TS) và độ cứng Brinell (BH) của nhiều loại sắt khác nhau.[3][5]
Vật liệuTS
(MPa)
BH
(Brinell)
Sắt whisker11000
Thép tôi2930850–1200
Thép Martensit2070600
Thép Bainit1380400
Thép Pearlit1200350
Sắt gia công nguội690200
Sắt hạt nhỏ340100
Sắt chứa cacbon14040
Sắt nguyên chất, đơn tinh thể103

Sơ đồ pha và thù hình

Bài chi tiết: Thù hình của sắt

Sắt là một đại diện ví dụ cho tính chất thù hình của kim loại. Có ít nhất 4 dạng thù hình của sắt gồm α, γ, δ, và ε; ở áp suất rất cao, một vài bằng chứng thực nghiệm còn tranh cãi cho thấy sự tồn tại của pha ổn định β ở áp suất và nhiệt độ rất cao.[8]

Sơ đồ pha áp suất thấp của sắt tinh khiết

Khi sắt nóng chảy nguội đi, nó kết tinh ở 1538 °C ở dạng thù hình δ, dạng này có cấu trúc tinh thể lập phương tâm khối (bcc). Khi nó nguội nhiều hơn cấu trúc tinh thể của nó chuyển sang dạng lập phương tâm mặt (fcc) ở 1394 °C, khi đó nó có ở dạng sắt γ, hay austenit. Ở 912 °C cấu trúc tinh thể lại chuyển sang dạng bcc là sắt α, hay ferrit, và ở 770 °C (điểm Curie, Tc) sắt trở thành sắt từ. Khi sắt đi qua điểm Curie sẽ không có sự thay đổi cấu trúc tinh thể, nhưng có sự thay đổi về "cấu trúc domain", ở đây mỗi domain chứa các nguyên tử sắt với các spin electron cụ thể. Ở sắt chưa bị từ hòa, tất cả các spin electron của các nguyên tử bên trong một domain có cùng hướng; các domain kề bên chỉ các hướng khác nhau và do đó triệt tiêu nhau. Đối với sắt bị từ hóa, các spin electron của tất cả các domain đều được xếp cùng hướng, vì vậy các hiệu ứng từ của các domain lân cận tăng cường lẫn nhau. Mặc dù mỗi domain chứa hàng tỉ nguyên tử, chúng rất nhỏ với bề rộng chỉ khoảng 10 micromet.[9] Ở áp suất trên 10 GPa và nhiệt độ hàng trăm K hoặc thấp hơn, sắt α chuyển thành cấu trúc sáu phương kết chặt (hcp), hay còn gọi là sắt ε; pha γ có nhiệt độ cao hơn cũng biến đổi thành sắt ε, nhưng ở áp suất cao hơn. Pha β, nếu tồn tại, có thể ở áp suất ít nhất 50 GPa và nhiệt độ ít nhất 1500 K; nó được cho là có cấu trúc trực thoi hoặc hcp kép.[8]

Tài liệu tham khảo

WikiPedia: Sắt http://www.gorni.eng.br/e/Gorni_SFHTHandbook.pdf http://books.google.com/?id=-Ll6qjWB-RUC&pg=PA164 http://books.google.com/?id=LgB5dkmPML0C&pg=PA218 http://books.google.com/?id=hoM8VJHTt24C&pg=PA24 http://books.google.com/books?id=0_oi1CLayh8C&pg=P... http://mdmetric.com/tech/hardnessconversion.html http://www.webelements.com/webelements/elements/te... http://adsabs.harvard.edu/abs/2000RvGeo..38..221B http://adsabs.harvard.edu/abs/2004NewAR..48..155M http://www.iom.edu/Object.File/Master/7/294/0.pdf